- Joined
- Jul 18, 1998
- Messages
- 25,129
- Reaction score
- 54,369
Offline
In recent decades, we've learned huge amounts about the universe and its history. The rapidly developing technology of telescopes—both on Earth and in space—has been a key part of this process, and those that are due to start operating over the next two decades should push the boundaries of our understanding of cosmology much further.
All observatories have a list of science objectives before they switch on, but it is their unexpected discoveries that can have the biggest impact. Many surprise advances in cosmology were driven by new technology, and the next telescopes have powerful capabilities.
Still, there are gaps, such as a lack of upcoming space telescopes for ultraviolet and visible light astronomy. Politics and national interests have slowed scientific progress. Financial belts are tightening at even the most famous observatories.
The biggest new telescopes are being built in the mountains of Chile. The Extremely Large Telescope (ELT) will house a mirror the size of four tennis courts, under a huge dome in the Atacama desert.
Reflecting telescopes like ELT work by using a primary mirror to collect light from the night sky, then reflecting it off other mirrors to a camera. Larger mirrors collect more light and see fainter objects.
Another ground-based telescope under construction in Chile is the Vera C. Rubin telescope. Rubin's camera is the largest ever built: the size of a small car and weighing about three tons. Its 3,200 megapixels will photograph the whole sky every three days to spot moving objects. Over the course of 10 years, these photographs will be combined to form a massive time-lapse video of the universe.
Astronomy used to be a physically demanding job, requiring travel to remote telescopes in dark sites–-but many astronomers began working from home long before COVID. In the late 20th century, major ground observatories started to put in place technology to allow astronomers to control telescopes for observations at night, even when they were not there in person. Remote observing is now commonplace, carried out via the internet...........
All observatories have a list of science objectives before they switch on, but it is their unexpected discoveries that can have the biggest impact. Many surprise advances in cosmology were driven by new technology, and the next telescopes have powerful capabilities.
Still, there are gaps, such as a lack of upcoming space telescopes for ultraviolet and visible light astronomy. Politics and national interests have slowed scientific progress. Financial belts are tightening at even the most famous observatories.
The biggest new telescopes are being built in the mountains of Chile. The Extremely Large Telescope (ELT) will house a mirror the size of four tennis courts, under a huge dome in the Atacama desert.
Reflecting telescopes like ELT work by using a primary mirror to collect light from the night sky, then reflecting it off other mirrors to a camera. Larger mirrors collect more light and see fainter objects.
Another ground-based telescope under construction in Chile is the Vera C. Rubin telescope. Rubin's camera is the largest ever built: the size of a small car and weighing about three tons. Its 3,200 megapixels will photograph the whole sky every three days to spot moving objects. Over the course of 10 years, these photographs will be combined to form a massive time-lapse video of the universe.
Astronomy used to be a physically demanding job, requiring travel to remote telescopes in dark sites–-but many astronomers began working from home long before COVID. In the late 20th century, major ground observatories started to put in place technology to allow astronomers to control telescopes for observations at night, even when they were not there in person. Remote observing is now commonplace, carried out via the internet...........